neurosciencestuff
neurosciencestuff:

Researchers use rhythmic brain activity to track memories in progress
University of Oregon researchers have tapped the rhythm of memories as they occur in near real time in the human brain.
Using electroencephalogram (EEG) electrodes attached to the scalps of 25 student subjects, a UO team led by psychology doctoral student David E. Anderson captured synchronized neural activity while they held a held a simple oriented bar located within a circle in short-term memory. The team, by monitoring these alpha rhythms, was able to decode the precise angle of the bar the subjects were locking onto and use that brain activity to predict which individuals could store memories with the highest quality or precision.
The findings are detailed in the May 28 issue of the Journal of Neuroscience. A color image illustrating how the item in memory was tracked by rhythmic brain activity in the alpha frequency band (8 to 12 beats per second) is on the journal’s cover page to showcase the research.
Although past research has decoded thoughts via brain activity, standard approaches are expensive and limited in their ability to track fast-moving mental representations, said Edward Awh, a professor in the UO’s Department of Psychology and Institute of Neuroscience. The new findings show that EEG measures of synchronized neural activity can precisely track the contents of memory at almost the speed of thought, he said.
"These findings provide strong evidence that these electrical oscillations in the alpha frequency band play a key role in a person’s ability to store a limited number of items in working memory," Awh said. “By identifying particular rhythms that are important to memory, we’re getting closer to understanding the low-level building blocks of this really limited cognitive ability. If this rhythm is what allows people to hold things in mind, then understanding how that rhythm is generated — and what restricts the number of things that can be represented — may provide insights into the basic capacity limits of the mind.”
The findings emerged from a basic research project led by Awh and co-author Edward K. Vogel — funded by the National Institutes of Health — that seeks to understand the limits of storing information. “It turns out that it’s quite restricted,” Awh said. “People can only think about a couple of things at a time, and they miss things that would seem to be extremely obvious and memorable if that limited set of resources is diverted elsewhere.”
Past work, mainly using functional magnetic resonance imaging (fMRI), has established that brain activity can track the content of memory. EEG, however, provides a much less expensive approach and can track mental activity with much a higher temporal resolution of about one-tenth of a second compared to about five seconds with fMRI.
"With EEG we get a fine-grained measure of the precise contents of memory, while benefitting from the superior temporal resolution of electrophysiological measures," Awh said. “This EEG approach is a powerful new tool for tracking and decoding mental representations with high temporal resolution. It should provide us with new insights into how rhythmic brain activity supports core memory processes.”

neurosciencestuff:

Researchers use rhythmic brain activity to track memories in progress

University of Oregon researchers have tapped the rhythm of memories as they occur in near real time in the human brain.

Using electroencephalogram (EEG) electrodes attached to the scalps of 25 student subjects, a UO team led by psychology doctoral student David E. Anderson captured synchronized neural activity while they held a held a simple oriented bar located within a circle in short-term memory. The team, by monitoring these alpha rhythms, was able to decode the precise angle of the bar the subjects were locking onto and use that brain activity to predict which individuals could store memories with the highest quality or precision.

The findings are detailed in the May 28 issue of the Journal of Neuroscience. A color image illustrating how the item in memory was tracked by rhythmic brain activity in the alpha frequency band (8 to 12 beats per second) is on the journal’s cover page to showcase the research.

Although past research has decoded thoughts via brain activity, standard approaches are expensive and limited in their ability to track fast-moving mental representations, said Edward Awh, a professor in the UO’s Department of Psychology and Institute of Neuroscience. The new findings show that EEG measures of synchronized neural activity can precisely track the contents of memory at almost the speed of thought, he said.

"These findings provide strong evidence that these electrical oscillations in the alpha frequency band play a key role in a person’s ability to store a limited number of items in working memory," Awh said. “By identifying particular rhythms that are important to memory, we’re getting closer to understanding the low-level building blocks of this really limited cognitive ability. If this rhythm is what allows people to hold things in mind, then understanding how that rhythm is generated — and what restricts the number of things that can be represented — may provide insights into the basic capacity limits of the mind.”

The findings emerged from a basic research project led by Awh and co-author Edward K. Vogel — funded by the National Institutes of Health — that seeks to understand the limits of storing information. “It turns out that it’s quite restricted,” Awh said. “People can only think about a couple of things at a time, and they miss things that would seem to be extremely obvious and memorable if that limited set of resources is diverted elsewhere.”

Past work, mainly using functional magnetic resonance imaging (fMRI), has established that brain activity can track the content of memory. EEG, however, provides a much less expensive approach and can track mental activity with much a higher temporal resolution of about one-tenth of a second compared to about five seconds with fMRI.

"With EEG we get a fine-grained measure of the precise contents of memory, while benefitting from the superior temporal resolution of electrophysiological measures," Awh said. “This EEG approach is a powerful new tool for tracking and decoding mental representations with high temporal resolution. It should provide us with new insights into how rhythmic brain activity supports core memory processes.”

neurosciencestuff
neurosciencestuff:

Researchers use rhythmic brain activity to track memories in progress
University of Oregon researchers have tapped the rhythm of memories as they occur in near real time in the human brain.
Using electroencephalogram (EEG) electrodes attached to the scalps of 25 student subjects, a UO team led by psychology doctoral student David E. Anderson captured synchronized neural activity while they held a held a simple oriented bar located within a circle in short-term memory. The team, by monitoring these alpha rhythms, was able to decode the precise angle of the bar the subjects were locking onto and use that brain activity to predict which individuals could store memories with the highest quality or precision.
The findings are detailed in the May 28 issue of the Journal of Neuroscience. A color image illustrating how the item in memory was tracked by rhythmic brain activity in the alpha frequency band (8 to 12 beats per second) is on the journal’s cover page to showcase the research.
Although past research has decoded thoughts via brain activity, standard approaches are expensive and limited in their ability to track fast-moving mental representations, said Edward Awh, a professor in the UO’s Department of Psychology and Institute of Neuroscience. The new findings show that EEG measures of synchronized neural activity can precisely track the contents of memory at almost the speed of thought, he said.
"These findings provide strong evidence that these electrical oscillations in the alpha frequency band play a key role in a person’s ability to store a limited number of items in working memory," Awh said. “By identifying particular rhythms that are important to memory, we’re getting closer to understanding the low-level building blocks of this really limited cognitive ability. If this rhythm is what allows people to hold things in mind, then understanding how that rhythm is generated — and what restricts the number of things that can be represented — may provide insights into the basic capacity limits of the mind.”
The findings emerged from a basic research project led by Awh and co-author Edward K. Vogel — funded by the National Institutes of Health — that seeks to understand the limits of storing information. “It turns out that it’s quite restricted,” Awh said. “People can only think about a couple of things at a time, and they miss things that would seem to be extremely obvious and memorable if that limited set of resources is diverted elsewhere.”
Past work, mainly using functional magnetic resonance imaging (fMRI), has established that brain activity can track the content of memory. EEG, however, provides a much less expensive approach and can track mental activity with much a higher temporal resolution of about one-tenth of a second compared to about five seconds with fMRI.
"With EEG we get a fine-grained measure of the precise contents of memory, while benefitting from the superior temporal resolution of electrophysiological measures," Awh said. “This EEG approach is a powerful new tool for tracking and decoding mental representations with high temporal resolution. It should provide us with new insights into how rhythmic brain activity supports core memory processes.”

neurosciencestuff:

Researchers use rhythmic brain activity to track memories in progress

University of Oregon researchers have tapped the rhythm of memories as they occur in near real time in the human brain.

Using electroencephalogram (EEG) electrodes attached to the scalps of 25 student subjects, a UO team led by psychology doctoral student David E. Anderson captured synchronized neural activity while they held a held a simple oriented bar located within a circle in short-term memory. The team, by monitoring these alpha rhythms, was able to decode the precise angle of the bar the subjects were locking onto and use that brain activity to predict which individuals could store memories with the highest quality or precision.

The findings are detailed in the May 28 issue of the Journal of Neuroscience. A color image illustrating how the item in memory was tracked by rhythmic brain activity in the alpha frequency band (8 to 12 beats per second) is on the journal’s cover page to showcase the research.

Although past research has decoded thoughts via brain activity, standard approaches are expensive and limited in their ability to track fast-moving mental representations, said Edward Awh, a professor in the UO’s Department of Psychology and Institute of Neuroscience. The new findings show that EEG measures of synchronized neural activity can precisely track the contents of memory at almost the speed of thought, he said.

"These findings provide strong evidence that these electrical oscillations in the alpha frequency band play a key role in a person’s ability to store a limited number of items in working memory," Awh said. “By identifying particular rhythms that are important to memory, we’re getting closer to understanding the low-level building blocks of this really limited cognitive ability. If this rhythm is what allows people to hold things in mind, then understanding how that rhythm is generated — and what restricts the number of things that can be represented — may provide insights into the basic capacity limits of the mind.”

The findings emerged from a basic research project led by Awh and co-author Edward K. Vogel — funded by the National Institutes of Health — that seeks to understand the limits of storing information. “It turns out that it’s quite restricted,” Awh said. “People can only think about a couple of things at a time, and they miss things that would seem to be extremely obvious and memorable if that limited set of resources is diverted elsewhere.”

Past work, mainly using functional magnetic resonance imaging (fMRI), has established that brain activity can track the content of memory. EEG, however, provides a much less expensive approach and can track mental activity with much a higher temporal resolution of about one-tenth of a second compared to about five seconds with fMRI.

"With EEG we get a fine-grained measure of the precise contents of memory, while benefitting from the superior temporal resolution of electrophysiological measures," Awh said. “This EEG approach is a powerful new tool for tracking and decoding mental representations with high temporal resolution. It should provide us with new insights into how rhythmic brain activity supports core memory processes.”

scientificillustration

humanoidhistory:

"GUIDE TO ASTRONOMY" — 17th-century, Ming Dynasty-era astronomical illustrations from a scientific volume by Wang Yingming, considered one of the first works by a Chinese scholar impacted by Western learning. Wang was strongly influenced by Li Zhizao (1565-1630), an official and scholar who translated works by Jesuit missionaries in China. (World Library)

neurosciencestuff
neurosciencestuff:

Controlling fear by modifying DNA
For many people, fear of flying or of spiders skittering across the lounge room floor is more than just a momentary increase in heart rate and a pair of sweaty palms.
It’s a hard-core phobia that can lead to crippling anxiety, but an international team of researchers, including neuroscientists from The University of Queensland’s Queensland Brain Institute (QBI), may have found a way to silence the gene that feeds this fear.
QBI senior research fellow Dr Timothy Bredy said the team had shed new light on the processes involved in loosening the grip of fear-related memories, particularly those implicated in conditions such as phobia and post-traumatic stress disorder.
Dr Bredy said they had discovered a novel mechanism of gene regulation associated with fear extinction, an inhibitory learning process thought to be critical for controlling fear when the response was no longer required.
“Rather than being static, the way genes function is incredibly dynamic and can be altered by our daily life experiences, with emotionally relevant events having a pronounced impact,” Dr Bredy said.
He said that by understanding the fundamental relationship between the way in which DNA functions without a change in the underlying sequence, future targets for therapeutic intervention in fear-related anxiety disorders could be developed.
“This may be achieved through the selective enhancement of memory for fear extinction by targeting genes that are subject to this novel mode of epigenetic regulation,” he said.
Mr Xiang Li, a PhD candidate and the study’s lead author, said fear extinction was a clear example of rapid behavioural adaptation, and that impairments in this process were critically involved in the development of fear-related anxiety disorders.
“What is most exciting is that we have revealed an epigenetic state that appears to be quite specific for fear extinction,” Mr Li said.
Dr Bredy said this was the first comprehensive analysis of how fear extinction was influenced by modifying DNA.
“It highlights the adaptive significance of experience-dependent changes in the chromatin landscape in the adult brain,” he said.
The collaborative research is being done by a team from QBI, the University of California, Irvine, and Harvard University.
The study was published this month in the Proceedings of the National Academy of Sciences of the United States of America.

#NeuroSciences #Genetics

neurosciencestuff:

Controlling fear by modifying DNA

For many people, fear of flying or of spiders skittering across the lounge room floor is more than just a momentary increase in heart rate and a pair of sweaty palms.

It’s a hard-core phobia that can lead to crippling anxiety, but an international team of researchers, including neuroscientists from The University of Queensland’s Queensland Brain Institute (QBI), may have found a way to silence the gene that feeds this fear.

QBI senior research fellow Dr Timothy Bredy said the team had shed new light on the processes involved in loosening the grip of fear-related memories, particularly those implicated in conditions such as phobia and post-traumatic stress disorder.

Dr Bredy said they had discovered a novel mechanism of gene regulation associated with fear extinction, an inhibitory learning process thought to be critical for controlling fear when the response was no longer required.

“Rather than being static, the way genes function is incredibly dynamic and can be altered by our daily life experiences, with emotionally relevant events having a pronounced impact,” Dr Bredy said.

He said that by understanding the fundamental relationship between the way in which DNA functions without a change in the underlying sequence, future targets for therapeutic intervention in fear-related anxiety disorders could be developed.

“This may be achieved through the selective enhancement of memory for fear extinction by targeting genes that are subject to this novel mode of epigenetic regulation,” he said.

Mr Xiang Li, a PhD candidate and the study’s lead author, said fear extinction was a clear example of rapid behavioural adaptation, and that impairments in this process were critically involved in the development of fear-related anxiety disorders.

“What is most exciting is that we have revealed an epigenetic state that appears to be quite specific for fear extinction,” Mr Li said.

Dr Bredy said this was the first comprehensive analysis of how fear extinction was influenced by modifying DNA.

“It highlights the adaptive significance of experience-dependent changes in the chromatin landscape in the adult brain,” he said.

The collaborative research is being done by a team from QBI, the University of California, Irvine, and Harvard University.

The study was published this month in the Proceedings of the National Academy of Sciences of the United States of America.

#NeuroSciences #Genetics

neuromorphogenesis
neuromorphogenesis:

Brain Mapping
A new map, a decade in the works, shows structures of the brain in far greater detail than ever before, providing neuroscientists with a guide to its immense complexity.
Neuroscientists have made remarkable progress in recent years toward understanding how the brain works. And in coming years, Europe’s Human Brain Project will attempt to create a computational simulation of the human brain, while the U.S. BRAIN Initiative will try to create a wide-ranging picture of brain activity. These ambitious projects will greatly benefit from a new resource: detailed and comprehensive maps of the brain’s structure and its different regions.
As part of the Human Brain Project, an international team of researchers led by German and Canadian scientists has produced a three-dimensional atlas of the brain that has 50 times the resolution of previous such maps. The atlas, which took a decade to complete, required slicing a brain into thousands of thin sections and digitally stitching them back together with the help of supercomputers. Able to show details as small as 20 micrometers, roughly the size of many human cells, it is a major step forward in understanding the brain’s three-dimensional anatomy.
To guide the brain’s digital reconstruction, researchers led by Katrin Amunts at the Jülich Research Centre in Germany initially used an MRI machine to image the postmortem brain of a 65-year-old woman. The brain was then cut into ultrathin slices. The scientists stained the sections and then imaged them one by one on a flatbed scanner. Alan Evans and his coworkers at the Montreal Neurological Institute organized the 7,404 resulting images into a data set about a terabyte in size. Slicing had bent, ripped, and torn the tissue, so Evans had to correct these defects in the images. He also aligned each one to its original position in the brain. The result is mesmerizing: a brain model that you can swim through, zooming in or out to see the arrangement of cells and tissues.
At the start of the 20th century, a German neuroanatomist named Korbinian Brodmann parceled the human cortex into nearly 50 different areas by looking at the structure and organization of sections of brain under a microscope. “That has been pretty much the reference framework that we’ve used for 100 years,” Evans says. Now he and his coworkers are redoing ­Brodmann’s work as they map the borders between brain regions. The result may show something more like 100 to 200 distinct areas, providing scientists with a far more accurate road map for studying the brain’s different functions.
“We would like to have in the future a reference brain that shows true cellular resolution,” says Amunts—about one or two micrometers, as opposed to 20. That’s a daunting goal, for several reasons. One is computational: Evans says such a map of the brain might contain several petabytes of data, which computers today can’t easily navigate in real time, though he’s optimistic that they will be able to in the future. Another problem is physical: a brain can be sliced only so thin.
Advances could come from new techniques that allow scientists to see the arrangement of cells and nerve fibers inside intact brain tissue at very high resolution. Amunts is developing one such technique, which uses polarized light to reconstruct three-­dimensional structures of nerve fibers in brain tissue. And a technique called Clarity, developed in the lab of Karl Deisseroth, a neuroscientist and bioengineer at Stanford University, allows scientists to directly see the structures of neurons and circuitry in an intact brain. The brain, like any other tissue, is usually opaque because the fats in its cells block light. Clarity melts the lipids away, replacing them with a gel-like substance that leaves other structures intact and visible. Though Clarity can be used on a whole mouse brain, the human brain is too big to be studied fully intact with the existing version of the technology. But Deisseroth says the technique can already be used on blocks of human brain tissue thousands of times larger than a thin brain section, making 3-D reconstruction easier and less error prone. And Evans says that while Clarity and polarized-light imaging currently give fantastic resolution to pieces of brain, “in the future we hope that this can be expanded to include a whole human brain.”

neuromorphogenesis:

Brain Mapping

A new map, a decade in the works, shows structures of the brain in far greater detail than ever before, providing neuroscientists with a guide to its immense complexity.

Neuroscientists have made remarkable progress in recent years toward understanding how the brain works. And in coming years, Europe’s Human Brain Project will attempt to create a computational simulation of the human brain, while the U.S. BRAIN Initiative will try to create a wide-ranging picture of brain activity. These ambitious projects will greatly benefit from a new resource: detailed and comprehensive maps of the brain’s structure and its different regions.

As part of the Human Brain Project, an international team of researchers led by German and Canadian scientists has produced a three-dimensional atlas of the brain that has 50 times the resolution of previous such maps. The atlas, which took a decade to complete, required slicing a brain into thousands of thin sections and digitally stitching them back together with the help of supercomputers. Able to show details as small as 20 micrometers, roughly the size of many human cells, it is a major step forward in understanding the brain’s three-dimensional anatomy.

To guide the brain’s digital reconstruction, researchers led by Katrin Amunts at the Jülich Research Centre in Germany initially used an MRI machine to image the postmortem brain of a 65-year-old woman. The brain was then cut into ultrathin slices. The scientists stained the sections and then imaged them one by one on a flatbed scanner. Alan Evans and his coworkers at the Montreal Neurological Institute organized the 7,404 resulting images into a data set about a terabyte in size. Slicing had bent, ripped, and torn the tissue, so Evans had to correct these defects in the images. He also aligned each one to its original position in the brain. The result is mesmerizing: a brain model that you can swim through, zooming in or out to see the arrangement of cells and tissues.

At the start of the 20th century, a German neuroanatomist named Korbinian Brodmann parceled the human cortex into nearly 50 different areas by looking at the structure and organization of sections of brain under a microscope. “That has been pretty much the reference framework that we’ve used for 100 years,” Evans says. Now he and his coworkers are redoing ­Brodmann’s work as they map the borders between brain regions. The result may show something more like 100 to 200 distinct areas, providing scientists with a far more accurate road map for studying the brain’s different functions.

“We would like to have in the future a reference brain that shows true cellular resolution,” says Amunts—about one or two micrometers, as opposed to 20. That’s a daunting goal, for several reasons. One is computational: Evans says such a map of the brain might contain several petabytes of data, which computers today can’t easily navigate in real time, though he’s optimistic that they will be able to in the future. Another problem is physical: a brain can be sliced only so thin.

Advances could come from new techniques that allow scientists to see the arrangement of cells and nerve fibers inside intact brain tissue at very high resolution. Amunts is developing one such technique, which uses polarized light to reconstruct three-­dimensional structures of nerve fibers in brain tissue. And a technique called Clarity, developed in the lab of Karl Deisseroth, a neuroscientist and bioengineer at Stanford University, allows scientists to directly see the structures of neurons and circuitry in an intact brain. The brain, like any other tissue, is usually opaque because the fats in its cells block light. Clarity melts the lipids away, replacing them with a gel-like substance that leaves other structures intact and visible. Though Clarity can be used on a whole mouse brain, the human brain is too big to be studied fully intact with the existing version of the technology. But Deisseroth says the technique can already be used on blocks of human brain tissue thousands of times larger than a thin brain section, making 3-D reconstruction easier and less error prone. And Evans says that while Clarity and polarized-light imaging currently give fantastic resolution to pieces of brain, “in the future we hope that this can be expanded to include a whole human brain.”

neurosciencestuff

neurosciencestuff:

A recently FDA-approved device has been shown to reduce seizures in patients with medication-resistant epilepsy by as much as 50 percent. When coupled with an innovative electrode placement planning system developed by physicians at Rush, the device facilitated the complete elimination of seizures…

#NeuroScience  #Brain